Kronecker product of $\mathrm{Sp}(2 n)$ representations using generalised Young tableaux

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 162609
(http://iopscience.iop.org/0305-4470/16/12/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:26

Please note that terms and conditions apply.

Kronecker product of $\mathbf{S p}(\mathbf{2 n})$ representations using generalised Young tableaux

G Girardi, A Sciarrino ${ }^{\dagger}$ and P Sorba \ddagger
LAPP, Annecy-le-Vieux, France

Received 16 October 1981, in final form 21 March 1983

Abstract

Using generalised Young tableaux, we obtain an explicit formula for the reduction of the Kronecker product of irreducible representations of the symplectic groups. This extends a previous work devoted to the case of orthogonal groups.

1. Introduction

In the present paper, generalising a method introduced by the authors (Girardi et al 1982a, b) for the reduction of the Kronecker product of irreducible representations (IRs) of $\mathrm{SO}(n)$ groups, we give general formulae for the direct product of two IRs of symplectic groups $\operatorname{Sp}(2 n)$. This problem has been studied in the past by Littlewood (1958) and King (1971) using character theory and Schur functions (Littlewood 1950). Recently, Black et al (1983) have written an extensive review on the application of S-function techniques to the evaluation of Kronecker products of IRs of compact semisimple Lie groups. Another approach was taken by Fischler (1980) who used Young tableaux methods but his method, despite its numerous rules, gives in the general case ambiguous results. The method we propose makes use of the weight vectors and reduces the problem to evaluating a sum of products of generalised Young tableaux (GYTs). GYTs are tableaux which can include negative boxes; their definitions and product rules were defined in Girardi et al (1982a, b). The use of these Gyts provides a consistent tool for the reduction of Kronecker products of irs of classical groups, and whether it is relevant for exceptional groups is now under study. Note that the expression 'generalised Young tableau' had already been introduced by King (1970) in a different sense for the study of mixed representations of the full linear group. In § 2 we give a very short recall of $\operatorname{Sp}(2 n)$ groups; in § 3 we present our result and finally in $\S 4$ we give an illustrating example.

2. A reminder of $\mathbf{S p}(\mathbf{2 n})$ groups

The Lie algebra of $\operatorname{Sp}(2 n)$ groups can be realised with the help of $n(2 n+1)$ infinitesimal generators Z_{j}^{i} (Gilmore 1970)

$$
\begin{aligned}
& {\left[Z_{j}^{i}, Z_{s}^{r}\right]=\operatorname{sgn}(j r)\left\{Z_{s}^{i} \delta_{-r}^{-j}+Z_{-r}^{-j} \delta_{s}^{i}+Z_{-r}^{i} \delta_{s}^{-j}+Z_{s}^{-j} \delta_{-i}^{r}\right\}, \quad i, j, r, s= \pm 1, \pm 2, \ldots, \pm n,} \\
& \qquad Z_{j}^{i}=Z_{i}^{j^{+}}=-\operatorname{sgn}(i j) Z_{-i}^{-j} \\
& \text { † On leave of absence from Istituto di Fisica Teorica, Napoli, Italy. Partly supported by Fondazione A } \\
& \text { Della Riccia, Italy. } \\
& \ddagger \text { On leave of absence from Centre de Physique Théorique, Marseilles, France. }
\end{aligned}
$$

If we relabel the generators $Z_{j^{\prime}}^{i^{\prime}}$ as

$$
Z_{i^{\prime}}^{i^{\prime}} \rightarrow Z_{j}^{i}, \quad i= \begin{cases}2 i^{\prime}, & i^{\prime}>0 \\ 2\left(-i^{\prime}\right)-1, & i^{\prime}<0,\end{cases}
$$

the n generators $H_{i}=Z_{2 i}^{2 i}(i=1, \ldots, n)$ commute with each other and span the maximal abelian (Cartan) subalgebra of $\operatorname{Sp}(2 n)$. The IRs of $\operatorname{Sp}(2 n)$ can be labelled by n positive integers $\mu_{i}\left(\mu_{i} \geqslant \mu_{i+1}\right)$ which are the highest eigenvalues (weight) of the generators H_{i}. Hereafter an IR will be labelled by the n-tuple ($\mu_{1}, \mu_{2}, \ldots, \mu_{n}$) or [μ]. The dimensionality of the IR $[\mu]$ is

$$
N[\mu]=P(l) / P(\tau) \quad \text { where } l_{i}=\mu_{i}+\tau_{i}, \tau_{i}=n-i+1
$$

and P is a product of the form

$$
P(l)=\prod_{i=1}^{n} l_{i} \prod_{i \geqslant k}^{n}\left(l_{k}-l_{i}\right)\left(l_{k}+l_{i}\right)
$$

Another way of labelling $\operatorname{Sp}(2 n)$ IRs is by n non-negative integers q_{i} (Dynkin notation) which are related to ours as follows:

$$
q_{i}=\mu_{i}-\mu_{i+1} \quad(i=1, \ldots, n-1), \quad q_{n}=\mu_{n}
$$

Tables of dimensions of IRS of $\operatorname{Sp}(2 n)$ can be found in Wybourne (1970 and references therein) and Patera and Sankoff (1972).

3. Rules for the product of two $\operatorname{Sp}(2 n)$ irs

The general formula for the product of two IRs $[\mu]$ and $[\nu]$ can be written as

$$
\begin{gather*}
{[\mu] \times[\nu]=\Sigma_{1}+\Sigma_{2},} \tag{3.1}\\
\Sigma_{1}=\sum_{k=0}^{N}\left(P_{n}^{2 k} \times[\nu]\right)_{\mathrm{A}} \times[\mu]-\sum_{k=a}^{N}\left(P_{n}^{2 a} \times[\mu]\right)_{\mathrm{NA}} \times\left(P_{n}^{2(k-a)} \times[\nu]\right)_{\mathrm{A}}, \tag{3.2}\\
\Sigma_{2}=\sum_{k=2}^{N} \sum_{r=0}^{k-2}(-1)^{k-r}\left(P_{n}^{2 r} \times[\nu]\right)_{\mathrm{A}} \times\left[[\mu]+\tilde{P}_{n}^{2(k-r)}\right], \tag{3.3}
\end{gather*}
$$

where $P_{n}^{2 k}$ is a sum of n-row negative GYT, $P_{n}^{2 k}=\Sigma_{\{\alpha\}} P_{n}^{2 k}(\alpha), P_{n}^{2 k}(\alpha)=$ $\left[0, \ldots,-\alpha_{2},-\alpha_{1}\right]$ in which the α_{i} are positive even numbers such that $\alpha_{i} \geqslant \alpha_{i+1}$ and $\sum_{i=1}^{n} \alpha_{i}=2 k$. When $P_{n}^{2 k}$ acts on the IR [$\left.\nu\right]$ the $\left\{\alpha_{i}\right\}$ must satisfy $\alpha_{\nu} \leqslant 2 \nu_{i}$. For a given k there are several possible sets $\left\{\alpha_{i}\right\}$, except for the extreme case

$$
\begin{equation*}
k_{\max }=N \equiv \sum_{i=1}^{n} \nu_{i} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{n}^{2 N}=\left[-2 \nu_{n}, \ldots,-2 \nu_{2},-2 \nu_{1}\right] \tag{3.5}
\end{equation*}
$$

is uniquely defined.
The label a is the smallest integer such that $P_{n}^{2 a} \times[\mu]$ gives a 'not-allowed' (NA) GYT (see definition below). Actually

$$
\begin{equation*}
a=\mu_{n}+1 \tag{3.6}
\end{equation*}
$$

The subscript ' A ' (allowed) means that among the GYTs $[\lambda]=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$ appearing in the product, one has to keep all those which fulfil the conditions:

$$
\begin{equation*}
\lambda_{n-i+1} \geqslant-\frac{1}{2} \alpha_{i} ; \tag{i}
\end{equation*}
$$

(ii) a GYt $[\lambda]$ coming from $P_{n}^{2 k}(\alpha) \times[\nu]$ is not an allowed one if there exists a GYT $\left[\lambda^{\prime}\right]$, coming from $P_{n}^{2 k}\left(\alpha^{\prime}\right) \times[\nu]$, with the same positive part (i.e. $\lambda_{1}=\lambda_{1}^{\prime}, \ldots, \lambda_{i}=$ λ_{i}^{\prime} if $\lambda_{1}, \lambda_{i}^{\prime}>0$ and $\lambda_{i+1}, \lambda_{i+1}^{\prime} \leqslant 0$) and with identical 'lexical order' for the negative part, and such that the negative part of [λ^{\prime}] is larger than the negative part of [λ] (i.e. $\left|\lambda_{n}^{\prime}\right|>\left|\lambda_{n}\right|$, or $\lambda_{n}^{\prime}=\lambda_{n}$ and $\left|\lambda_{n-1}^{\prime}\right|>\left|\lambda_{n-1}\right|$, and so on) or equal to it (i.e. $\lambda_{n}^{\prime}=$ $\lambda_{n}, \ldots, \lambda_{i+1}^{\prime}=\lambda_{i+1}$). Calling a, b, \ldots the boxes in the 1 st, 2 nd, \ldots rows of [ν], the tableaux [λ] and [λ^{\prime}] will be said to have the same 'lexical order' if in the negative part of both tableaux we find the letters a, b, \ldots appearing in identical order when reading from left to right and from top to bottom; let us illustrate this condition on an example in $\operatorname{Sp}(8)$ where $[\nu]=[3210]$. With $P_{4}^{6}(000-6)$ and $P_{4}^{6}(00-2-4)$ we obtain

Following the above rule, the first GYt $[\lambda]=[21-1-2]$ appearing in the decomposition of the second product is not an allowed GYT, since the GYT $\left[\lambda^{\prime}\right]=[210-3]$ appearing in the first product has the same positive part as $[\lambda]$, a negative part larger than that of $[\lambda]\left(\left|\lambda_{4}^{\prime}\right|>\left|\lambda_{4}\right|\right)$ and the same lexical order as $[\lambda]: ~ ' a, b, c$ '.

Actually, condition (i) guarantees that the set of states associated to the GYT [$\lambda]$ coming from the product $P_{n}^{2 k}(\alpha) \times[\nu]$ really belongs to [ν], while condition (ii) arises because the states associated to the GYT $\left[\lambda^{\prime}\right]$ are in fact already contained in the Gyt [λ].

The subscript 'NA' means that in the product, one has to keep only the GYTs [λ] which do not satisfy conditions (i) and (ii).

In (3.3) $\left[[\mu]+\tilde{P}_{n}^{2(k-r)}\right]$ is a sum of GYTs whose rows are the rows of $[\mu]$ plus the rows of a negative GYT $\tilde{P}_{n}^{2(k-r)}\left(\left\{\gamma_{i}\right\}\right)$ which can be computed by the following formula:

$$
\begin{equation*}
\tilde{P}_{n}^{2 l}=\sum_{\left\{\gamma_{i}\right\}} \tilde{P}_{n}^{2 l}\left(\left\{\gamma_{i}\right\}\right)=\sum_{j=1}^{l} \sum_{\left\{\alpha_{i}\right\}} P_{n}^{2 j}\left(\left\{\alpha_{i}\right\}\right) \times \tilde{P}_{n}^{2(l-j)} \times(-1)^{j-1} \tag{3.10}
\end{equation*}
$$

where $l=1,2, \ldots$ and $\tilde{P}_{n}^{0}=0=[0,0, \ldots, 0]$.
The terms given by (3.10) are present only when the IR [μ] has, at least, as many null labels as the number of negative rows of $\hat{P}_{n}^{2(k-r)}\left(\left\{\gamma_{i}\right\}\right)$. We give explicitly the $\tilde{P}_{n}^{2 l}\left(\left\{\gamma_{i}\right\}\right)$ for $l=1,2,3$:

$$
\begin{align*}
& \tilde{P}_{n}^{2}=[0, \ldots, 0,-2]=P_{n}^{2}, \quad \tilde{P}_{n}^{4}=[0, \ldots, 0,-1,-3], \\
& \tilde{P}_{n}^{6}=[0, \ldots 0,-3,-3]+[0, \ldots, 0,-1,-1,-4] . \tag{3.12}
\end{align*}
$$

On the Rhs of (3.2) and (3.3), one has to keep all the GYTs [λ] such that $\lambda_{i} \geqslant 0$ for $i=1, \ldots, n$.

For practical purposes it is more convenient to choose for [ν] the IR which has the least number of boxes, this minimising the number of operators $P^{2 k}$ to be considered.

We note that if $a=1$ ($\mu_{n}=0$), equations (3.1)-(3.3) can be rewritten in the more compact form

$$
\begin{equation*}
[\mu] \times[\nu]=\sum_{k=0}^{N} \sum_{r=0}^{k}(-1)^{k-r}\left(P_{n}^{2 r} \times[\nu]\right)_{\mathrm{A}} \times\left[[\mu]+\tilde{P}_{n}^{2(k-r)}\right] \tag{3.13}
\end{equation*}
$$

Note also that in the case where $[\nu]$ is such that $P_{n}^{2 k} \times[\nu]$ never gives a not-allowed $\operatorname{GYT}\left(\right.$ then $[\nu]=\left[\nu_{1}, \nu_{1}, \ldots, \nu_{1}\right]$), equations (3.1)-(3.3) can be rewritten in the following simpler form:

$$
\begin{equation*}
[\mu] \times[\nu]=\sum_{k=0}^{N}\left\{\left(P_{n}^{2 k} \times[\nu]\right)_{\mathrm{A}} \times[\mu]-\left(P_{n}^{2 k} \times[\mu]\right)_{\mathrm{NA}} \times[\nu]\right\} \tag{3.14}
\end{equation*}
$$

Finally we give compact formulae which can be deduced for completely symmetric or antisymmetric IRs $(\mu \geqslant \nu)$:

$$
\left.\begin{array}{l}
\quad[\mu, 0, \ldots, 0] \times[\nu, \ldots, 0]=\sum_{l=0}^{\nu} \sum_{k=0}^{\nu-l}[\mu+\nu-2 k-2 l, k, 0, \ldots, 0], \\
{[\alpha, \ldots, \alpha] \times}
\end{array}\right][\beta, \ldots, \beta] \quad=\sum_{0 \leqslant k_{1} \leqslant k_{2} \leqslant \ldots \leqslant k_{n}}\left[\alpha+\beta-2 k_{1}, \alpha+\beta-2 k_{2}, \ldots, \alpha+\beta-2 k_{n}\right] .
$$

4. An illustrative example

Let us calculate in $\mathrm{Sp}(10)$ the Kronecker product [22000] \otimes [21000] of respective dimensions 780 and 320 . Hereafter the zero labels will be ignored when unnecessary. We shall operate on $[\nu]=[21]$; since it has only three boxes, we have to consider $k=0,1,2,3$.
$k=0:[22] \times[21]=[43]+[421]+[331]+[322]+[3211]+[2221]$.
$k=1$: there $P_{5}^{2}=[0000-2]$ so
$\left(P_{5}^{2} \times[\nu]\right)_{\mathrm{A}}=([0000-2] \times[21])_{\mathrm{A}}=[2000-1]+[1100-1]+[10000]$.
Then the products with $[\mu]=[22]$ give

$$
\begin{align*}
& {[2000-1] \times[22]=[41]+[32]+[311]+[221],} \\
& {[1100-1] \times[22]=[32]+[311]+[221]+[2111]} \tag{4.3}\\
& {[1] \times[22]=[32]+[221]}
\end{align*}
$$

Now we consider if there are not-allowed terms of the type $P_{5}^{2} \times[\mu]$, and find one:

$$
\begin{equation*}
\left(P_{S}^{2} \times[\mu]\right)_{\mathrm{NA}} \times[\nu]=[2200-2]_{\mathrm{NA}} \times[21]=[32]+[221] . \tag{4.4}
\end{equation*}
$$

So from the terms obtained in (4.3) one subtracts the contribution of (4.4).
$k=2$: We have two different P_{5}^{4}, namely [000-2-2] and [0000-4]:

$$
\begin{align*}
& ([000-2-2] \times[21])_{\mathrm{A}}=[100-1-1]+[1000-2]+[0000-1], \tag{4.5}\\
& ([0000-4] \times[21])_{\mathrm{A}}=[1000-2] . \tag{4.6}
\end{align*}
$$

In view of rule (ii) and equation (3.7) we ignore (4.6) and only consider (4.5) for multiplying by $[\mu]$:

$$
\begin{align*}
& {[100-1-1] \times[22]=[21]+[111], \quad[1000-2] \times[22]=[3]+[21],} \\
& {[0000-1] \times[22]=[21] .} \tag{4.7}
\end{align*}
$$

There is one not-allowed contribution of the type occurring in (3.9); this gives

$$
\begin{equation*}
[2200-2]_{\mathrm{NA}} \times[2000-1]=[21] \tag{4.8}
\end{equation*}
$$

to be subtracted from (4.7).
$k=3$: At this level we have only to consider $P_{5}^{6}=(000-2-4)$ (from equation (3.5)); this gives

$$
\begin{equation*}
\{[000-2-4] \times[21]\} \times\{[22]\}=[000-1-2] \times[22]=[1] . \tag{4.9}
\end{equation*}
$$

Gathering all the terms obtained we have as our final result:

$$
\begin{aligned}
{[22] \times[21]=} & {[43]+[421]+[331]+[322]+[3211]+[2221] } \\
780 \times 320= & 42240+71500+35640+28028+32340+9152 \\
& +[41]+2[32]+2[311]+2[221]+[2111] \\
& 4928+2 \times 4620+2 \times 4212+2 \times 2860+1408 \\
& +[3]+2[21]+[111]+[1] \\
& 220+2 \times 320+110+10 .
\end{aligned}
$$

Acknowledgments

The authors are very grateful to the referee whose useful suggestions and pertinent remarks have led to this final version.

Appendix. Product of two GYTS

The product of two Gyts has been defined in Girardi et al (1982a) as a generalisation of the product of two Young tableaux for $\mathrm{U}(n)$ groups. In particular, in the case where the two GYts [λ] and [μ] to be multiplied have only positive rows, one has to use only the rules for $\mathrm{U}(n)$ Young tableaux, the only difference being that one cannot replace here a tableau $\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ with $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}>0$ by the tableau [$\lambda_{1}-$ $\left.\lambda_{n}, \ldots, \lambda_{n-1}-\lambda_{n}, 0\right]$.

Hereafter, we would like to propose a different way to make the product of two GYTs, equivalent of course to the method already given, but which may be easier to remember once one knows the usual method for $\mathrm{U}(n)$ groups.

Let us suppose $[\lambda]$ and $[\mu]$ such that $\lambda_{n} \leqslant 0$ and $\mu_{n} \leqslant 0$. Then a direct way to make the product $[\lambda] \times[\mu]$ is to perform the product $\left[\lambda^{\prime}\right] \times\left[\mu^{\prime}\right]$ of the two Young tableaux [λ^{\prime}] and [μ^{\prime}] with $\lambda_{i}^{\prime}=\lambda_{i}-\lambda_{n}$ and $\mu_{i}^{\prime}=\mu_{i}-\mu_{n}(i=1, \ldots, n)$, and then to replace each obtained Young tableau $\left[\nu^{\prime}\right]$ by the GYT $[\nu]$ such that $\nu_{i}=\nu_{i}^{\prime}+\lambda_{n}+\mu_{n}$.

However, we remark that this method may lead to cumbersome calculations. In particular, the product of a totally positive GYT by a totally negative one is more rapidly performed using the first rule already proposed.

References

Black G R E, King R C and Wybourne B G 1983 J. Phys. A: Math. Gen. 161555
Fischler M 1980 Fermilab preprint 80/49
Gilmore R 1970 J. Math. Phys. 11513
Girardi G, Sciarrino A and Sorba P 1982a J. Phys. A: Math. Gen. 151119

- 1982 b Proc. Xth Int. Conf. group theoretical methods in Physics 1981, Physica 114A 365

King R 1970 J. Math. Phys. 11280

- 1971 J. Math. Phys. 121588

Littlewood D E 1950 The theory of group characters 2nd edn (London: OUP)
-- 1958 Cam. J. Math. 1017
Patera J and Sankoff D 1972 Branching rules for representation of simple Lie algebras CRM-167 (Montréal: Centre de Recherches Mathématiques, Université de Montréal)
Wybourne B G 1970 Symmetry Principles and Atomic Spectroscopy (with a large appendix of tables by P H Butler) (New York: John Wiley)

